
Ghement Statistical Consulting Company Ltd. @ 2018

Hi everyone,

Thank you once again for joining our purrr resolution for 2018, which aims to help us learn

(at least) one purrr function each week. As one of you mentioned, this is the purrrfect

resolution for 2018 and we are now in a position where we can leverage our joint passion

and knowledge to bring this resolution to life.

As you know, the challenge for Week 1 was for us to get more familiar with the function

modify_depth() from purrr. The blurb
at http://www.ghement.ca/modify_depth.pdf illustrated a particular use of this function.

If you followed the blurb, you know that its aim was to help produce a nested list called

yearly_data_mod which looked like this:

> yearly_data_mod

$`2016`

$`2016`$Winter

 Site Temp

1 01 15

2 02 17

3 03 20

$`2016`$Summer

 Site Temp

1 01 14

2 02 16

3 03 19

$`2017`

$`2017`$Winter

 Site Temp

1 01 16

2 02 18

3 03 21

$`2017`$Summer

 Site Temp

1 01 17

2 02 19

3 03 22

The blurb concluded by asking how we can convert the values of the Temp variable (which

stands for Temperature, measured in degrees Celsius) from degrees Celsius to degrees

Fahrenheit for each year and season represented in the nested list (while preserving the
structure of the list).

Following suggestions from Bruno Rodrigues and Christopher Peters, I was able to come up

with two different solutions for this question, though I am sure there may be others.

http://www.ghement.ca/modify_depth.pdf

Solution No. 1 [Uses modify_depth() call]:

require(purrr)

yearly_data_mod_transf <- modify_depth(yearly_data_mod, .depth = 2, .f =

function(x){ x$Temp <- x$Temp*(9/5) + 32; return(x) })

yearly_data_mod_transf

If we wanted to use the pipe operator, the code above could be re-expressed as:

yearly_data_mod_transf <- yearly_data_mod %>%

 modify_depth(.depth = 2, .f = function(x){ x$Temp

<- x$Temp*(9/5) + 32; return(x)})

yearly_data_mod_transf

Using the modify_depth() function to apply a transformation only to the Temp column from

each of the data frames embedded within a season by year combination involves two
things:

 1. Specifying the depth at which the data frame is located (in this case 2, since the year

represents level 1 and the season within year represents level 2) - this is achieved with the

option .depth = 2 of modify_depth();

 2. Specifying the function to be applied to the Temp column - this is achieved with the

option .f = function(x){ x$Temp <- x$Temp*(9/5) + 32; return(x)} of modify_depth().

Because we want the nested list structure to be preserved after converting Temp from

degrees Celsius to degrees Fahrenheit, we have to apply the conversion function .f to the

entire data frame (denoted generically by x) but make sure that, inside the function, we only pluck Temp

from the data frame (using the syntax x$Temp) and subject it to the necessary conversion. The

conversion consists of multiplying the plucked temperature x$Temp by 9/5 and then adding 32 to the

result of that multiplication.

These two steps are illustrated below in schematic fashion via the annotations listed in red colour:

> yearly_data_mod

$`2016` <--- level 1 (year)

$`2016`$Winter <--- level 2 (season within year)

 Site Temp <--- data frame x (which includes the Temp variable, x$Temp)

1 01 15

2 02 17

3 03 20

$`2016`$Summer

 Site Temp <--- data frame x (which includes the Temp variable, x$Temp)

1 01 14

2 02 16

3 03 19

$`2017`

$`2017`$Winter

 Site Temp <--- data frame x (which includes the Temp variable, x$Temp)

1 01 16

2 02 18

3 03 21

$`2017`$Summer

 Site Temp <--- data frame x (which includes the Temp variable, x$Temp)

1 01 17

2 02 19

3 03 22

Solution No. 2 [Uses nested map() call]:

The second solution follows the same principles as explained above for the first solution, but uses

different means to implement them. We still concern ourselves with the data frame .x (i.e., the data

frame containing the Temp variable, of which we have one for each season and year combination) and
we still want to apply the Celsius to Fahrenheit conversion to the Temp variable located in that data
frame. But notice how we now use an inner call to the function map() from the purrr package,
~ map(.x, function(x){ x$Temp <- x$Temp*(9/5) + 32; return(x)}), to apply the

temperature conversion to the data frame. This inner call to the function map() is first preceded by the
tilde operator ~ and then embedded in an outer call to the function map(), which helps us apply the
conversion to all data frames corresponding to the years and seasons combinations represented in the
nested list. The outer call to map() looks like this:

map(yearly_data_mod, ~ map (.x, function(x){ x$Temp <- x$Temp*(9/5) + 32;

return(x)}))

Here is the R code for the second solution:

require(purrr)

yearly_data_mod_transf <- map(yearly_data_mod, ~ map(.x, function(x){ x$Temp

<- x$Temp*(9/5) + 32; return(x)}))

yearly_data_mod_transf

Of course, if we wanted to use the pipe operator, the code above for the second

solution could be re-expressed as:

require(purrr)

require(magrittr)

yearly_data_mod_transf <- yearly_data_mod %>%

 map(~ map(.x, function(x){ x$Temp <-

x$Temp*(9/5) + 32; return(x)}))

yearly_data_mod_transf

Our next installment of purrr goodness for Week 2 will come from Christopher Peters
(Twitter Handle: @statwonk).

Keep on purrring!

Isabella

Isabella R. Ghement, Ph.D.

Ghement Statistical Consulting Company Ltd.

301-7031 Blundell Road, Richmond, B.C., Canada, V6Y 1J5

Tel: 604-767-1250

Fax: 604-270-3922

E-mail: isabella@ghement.ca
Web: www.ghement.ca

